We have the following data set:
2,7,15,3,12,9,15,8,3,10
The range is the difference between the highest and lowest values in the set, to find the range, order the data set from least to greatest.
2,3,3,7,8,9,10,12,15,15
Then,
[tex]\begin{gathered} \text{Range}=15-2 \\ \text{Range}=13 \end{gathered}[/tex]Mean is represented by the following expression:
[tex]\text{Mean}=\frac{\text{Sum of all data points}}{Number\text{ of data po}ints}[/tex][tex]\text{Mean}=\frac{84}{10}=8.4[/tex]Population variance formula looks like this:
[tex]\begin{gathered} \sigma^2=\frac{\sum^{}_{}(x-\mu)^2}{N} \\ \text{where,} \\ \sigma^2=\text{population variance} \\ \sum ^{}_{}=addition\text{ of} \\ x=\text{each value} \\ \mu=population\text{ mean} \\ N=\text{ number of values in the population} \end{gathered}[/tex]Then, substituting:
[tex]\begin{gathered} \sigma^2=\frac{(2-14)^2+(3-14)^2+\cdots+(15-14)^2}{10} \\ \sigma^2=20.44 \end{gathered}[/tex]For the standard deviation:
[tex]\begin{gathered} s=\sqrt[]{\frac{\sum ^{}_{}(x-\mu)^2}{N}} \\ s=4.521 \end{gathered}[/tex]