Respuesta :

Given the Central Angle:

[tex]\theta=200\text{\degree}[/tex]

And the diameter:

[tex]d=18\operatorname{cm}[/tex]

You need to use the following formula for calculating the area of a sector of the circle:

[tex]A=\frac{\theta\pi r^2}{360\text{\degree}}[/tex]

Where "r" is the radius of the circle and θ is the Central Angle (in degrees).

By definition, the radius is half the diameter. Then:

[tex]r=\frac{18\operatorname{cm}}{2}=9cm[/tex]

Then, substituting values into the formula and evaluating, you get:

[tex]A=\frac{(200\text{\degree)}\pi(9cm)^2^{}}{360\text{\degree}}[/tex][tex]A=45\pi\text{ }\operatorname{cm}^2[/tex]

Hence, the answer is:

[tex]A=45\pi\text{ }\operatorname{cm}^2[/tex]

RELAXING NOICE
Relax