We need to solve for x in the equation:
[tex]0.9x-0.7\cdot(6-x)=6.2[/tex]We need to apply the distributive property to remove the parenthesis:
[tex]0.9x-4.2+0.7x=6.2[/tex]Then we need to add the like terms:
[tex]1.6x-4.2=6.2\Rightarrow1.6x=6.2+4.2\Rightarrow1.6x=10.4\Rightarrow x=\frac{10.4}{1.6}\Rightarrow x=6.5[/tex]Then, the value for x is 6.5 (decimal form) or
[tex]x=6\frac{1}{2}[/tex]To check the solution:
[tex]0.9\cdot(6.5)-4.2+0.7\cdot(6.5)=6.2[/tex]