Respuesta :

Given: the vector v

[tex]v=7i-2j[/tex]

To Determine: The direction of the given vector

The vector diagram is as shown below

The direction of a vector is calculated by the formula

[tex]\theta=\tan ^{-1}(\frac{y}{x})[/tex]

From the given vector, determine x and y

[tex]x=7,y=-2[/tex]

Note, the vector is on the fourth quadrant

[tex]\begin{gathered} \theta=\tan ^{-1}(\frac{7}{-2}) \\ \theta=74.05+270=344.05 \\ \theta\approx344.1^0 \end{gathered}[/tex]

Hence, the direction of v is 344.1⁰(nearest one decimal place)

Ver imagen KenzeeF369973