We will have the following:
First, we remember that by the conservation of energy the following is true:
[tex]KE_f+PE_f=KE_i+PE_i[/tex]Now, this in terms of movement with respect to the angle given is:
[tex]\frac{1}{2}I\omega^2_f+m\cdot g\cdot(0)=\frac{1}{2}I(0rad/s)^2_i+m\cdot g\cdot h[/tex]So:
[tex]\frac{1}{2}I\omega^2_f=m\cdot g\cdot h[/tex]From this and the information provided we can see that:
[tex]h=(2m)\sin (60)\Rightarrow h=\sqrt[]{3}m[/tex]And from the inertia of a rod we have that:
[tex]I=\frac{1}{3}(1kg)(2m)^2\Rightarrow I=\frac{4}{3}kg\cdot m^2[/tex]Now, we plug in this information and solve for the angular velocity:
[tex]\frac{1}{2}(\frac{4}{3}kg\cdot m^2)\omega^2_f=(1kg)(9.8m/s^2)(\sqrt[]{3}m)\Rightarrow\omega^2_f=\frac{9.8\cdot\sqrt[]{3}}{(2/3)}[/tex][tex]\Rightarrow\omega_f=\sqrt[]{\frac{9.8\sqrt[]{3}}{(2/3)}}\Rightarrow\omega_f=5.04590397\ldots[/tex][tex]\Rightarrow\omega_f\approx5[/tex]So, the velocity of the tip of the rod as it passes the horizontal position is approximately 5 radians/s.