Respuesta :

Given:

a.) Angle CED = 145°

b.) Length of CE is 12 cm.

To be able to get the arc length of CD, we will be using the following formula:

[tex]\text{ Arc Length = 2}\pi r\text{ (}\frac{\theta}{360^{\circ}})[/tex]

Where,

r = radius of the circle

θ = angle

We get,

[tex]\begin{gathered} \text{ Arc Length = 2}\pi r\text{ (}\frac{\theta}{360^{\circ}}) \\ \text{ = 2}\pi(12)(\frac{145^{\circ}}{360^{\circ}}) \\ \text{ = 24}\pi(\frac{29}{72}) \\ \text{ = }\frac{696\pi}{72} \\ \text{ = 30.35333}\ldots\text{ }\approx\text{ 30.35 cm.} \end{gathered}[/tex]

Therefore, the length of arc CD is 30.35 cm.

RELAXING NOICE
Relax