In the circle E, angle CED=145 and the length of CE is 12 cm. what is the length of arc CD

Given:
a.) Angle CED = 145°
b.) Length of CE is 12 cm.
To be able to get the arc length of CD, we will be using the following formula:
[tex]\text{ Arc Length = 2}\pi r\text{ (}\frac{\theta}{360^{\circ}})[/tex]Where,
r = radius of the circle
θ = angle
We get,
[tex]\begin{gathered} \text{ Arc Length = 2}\pi r\text{ (}\frac{\theta}{360^{\circ}}) \\ \text{ = 2}\pi(12)(\frac{145^{\circ}}{360^{\circ}}) \\ \text{ = 24}\pi(\frac{29}{72}) \\ \text{ = }\frac{696\pi}{72} \\ \text{ = 30.35333}\ldots\text{ }\approx\text{ 30.35 cm.} \end{gathered}[/tex]Therefore, the length of arc CD is 30.35 cm.