Respuesta :

We have the following equation to find the area of a circle sector:

[tex]A=(\frac{\theta}{2\pi})\cdot\pi\cdot r^2[/tex]

in this case, we have the following information:

[tex]\begin{gathered} A=27\pi \\ r=9 \end{gathered}[/tex]

using these values on the equation and solving for theta, we get:

[tex]\begin{gathered} (\frac{\theta}{2\pi})\cdot\pi\cdot(9)^2=27\pi \\ \Rightarrow\frac{\theta}{2}\cdot81=27\pi \\ \Rightarrow\frac{\theta}{2}=\frac{27\pi}{81}=\frac{\pi}{3} \\ \Rightarrow\theta=\frac{2}{3}\pi \end{gathered}[/tex]

therefore, the angle is 2/3 pi. Converting to decimal, we get:

[tex]\frac{2}{3}\pi\cdot\frac{180}{\pi}=\frac{360}{3}=120\degree[/tex]

therefore, the angle measures 120 degrees

ACCESS MORE
EDU ACCESS