Answer:
6.2 days
Explanation:
The half-life occurs when the mass N is equal to half of the initial mass, so to find the half-life, we need to replace N with No and solve for t
[tex]\begin{gathered} N=N_oe^{-kt} \\ N=N_oe^{-0.1124t} \\ \\ \text{ Replacing N = No/2, we get} \\ \frac{N_o}{2}=N_oe^{-0.1124t} \\ \\ \text{ Solving for t} \\ \frac{N_o}{2N_o}=e^{-0.1124t} \\ \\ \frac{1}{2}=e^{-0.1124t} \\ \\ ln(\frac{1}{2})=ln(e^{-0.1124t}) \\ \\ -0.6931=-0.1124t \\ \\ \frac{-0.6931}{-0.1124}=\frac{-0.1124t}{-0.1124} \\ \\ 6.2\text{ days = t} \end{gathered}[/tex]
Therefore, the answer is
t = 6.2 days