You have the following sequence:
1 , 3 , 9 , 27 , ...
The last sequence can be written as follow:
[tex]\sum ^{}_n3^n[/tex]For n = 8, you obtain:
[tex]\begin{gathered} \sum ^{}_n3^n=3^0+3^1+3^2+3^3+3^4+3^5+3^6+3^7+3^8 \\ \sum ^{}_n3^n=1+3+9+27+81+243+729+2187+6561 \\ \sum ^{}_n3^n=9841 \end{gathered}[/tex]Hence, the sum is 9841