Determine the number of different triangles that he can form using the given measurements. Then solve the triangles. Round to the nearest tenth.pleasee help

Answer:
[tex]m\angle B=37.3\degree,m\angle C=97.7\degree,c=9.8m[/tex]Explanation:
Given:
[tex]a=7m,b=6m,m\angle A=45\degree[/tex]The given side is the longer of the two, so there will be only one solution.
Using Law of Sines:
[tex]\frac{a}{\sin A}=\frac{b}{\sin B}[/tex]Substitute the given values:
[tex]\begin{gathered} \frac{7}{\sin45}=\frac{6}{\sin B} \\ 7\times\sin B=6\times\sin 45 \\ \sin B=\frac{6\times\sin 45}{7} \\ B=\arcsin \mleft(\frac{6\times\sin45}{7}\mright) \\ B=37.3\degree \end{gathered}[/tex]The sum of the angles in a triangle is 180 degrees.
[tex]\begin{gathered} m\angle C=180-(\angle A+\angle B) \\ =180-(45+37.3) \\ =180-82.3 \\ m\angle C=97.7\degree \end{gathered}[/tex]Finally, we find the length of c using the Sine rule.
[tex]\begin{gathered} \frac{c}{\sin C}=\frac{b}{\sin B} \\ \frac{c}{\sin 97.7\degree}=\frac{6}{\sin 37.3} \\ c=\frac{6}{\sin37.3}\times\sin 97.7\degree \\ c=9.8m \end{gathered}[/tex]Thus, the solution to the triangle is:
[tex]m\angle B=37.3\degree,m\angle C=97.7\degree,c=9.8m[/tex]