Solve for g(x)=-4Using the function g as defined in the given equation

We need to solve the equation:
[tex]x^2+5x+2=-4[/tex]Adding 4 to both sides of the equation, we obtain:
[tex]\begin{gathered} x^2+5x+2+4=-4+4 \\ \\ x^2+5x+6=0 \end{gathered}[/tex]Now, using the quadratic formula, we obtain:
[tex]\begin{gathered} x=\frac{-5\pm\sqrt{5²-4(1)(6)}}{2(1)} \\ \\ x=\frac{-5\pm\sqrt{25-24}}{2} \\ \\ x=\frac{-5\pm1}{2} \\ \\ x_1=\frac{-5-1}{2}=-\frac{6}{2}=-3 \\ \\ x_2=\frac{-5+1}{2}=-\frac{4}{2}=-2 \end{gathered}[/tex]Answers:
x = -2
x = -3