Derivatives
We are given the function
[tex]f(x)=x\cdot\ln (x^2)[/tex]We must find
[tex]f^{\doubleprime}(2)[/tex]Or the second derivative of f evaluated at x=2.
Find the first derivative. We must recall the following rules of derivatives:
[tex]\begin{gathered} \lbrack f\cdot g\rbrack^{\prime}=f^{\prime}\cdot g+f\cdot g^{\prime} \\ (\ln u)^{\prime}=\frac{u^{\prime}}{u} \\ (x^n)^{\prime}=n\cdot x^{n-1} \end{gathered}[/tex]Let's compute f'(x):compute
[tex]\begin{gathered} f^{\prime}(x)=(x)^{\prime}\cdot\ln x^2+x\cdot(\ln x^2)^{\prime} \\ f^{\prime}(x)=(1)\cdot\ln x^2+x\cdot\frac{2x}{x^2} \\ f^{\prime}(x)=\ln x^2+2 \end{gathered}[/tex]Now take the derivative again:
[tex]\begin{gathered} f^{\doubleprime}(x)=(\ln x^2+2)^{\prime} \\ f^{\doubleprime}(x)=\frac{2x}{x^2}+0=\frac{2}{x} \end{gathered}[/tex]Evaluating at x=2:
[tex]f^{\doubleprime}(2)=\frac{2}{2}=1[/tex]