The Solution:
Using the formula:
[tex]Z_{70}=\frac{x-\mu}{\sigma}[/tex]Where,
[tex]\begin{gathered} x=70kg \\ \mu=65kg \\ \sigma=11kg \end{gathered}[/tex]Substituting, we get
[tex]P(Z>Z_{70})=\frac{70-65}{11}=\frac{5}{11}=0.45455[/tex]From the Z score table,
[tex]\begin{gathered} P(Z>Z_{70})=0.3242=p \\ 1-P(Z>Z_{70})=1-0.3242=0.6758=q \end{gathered}[/tex]By the Binomial expansion formula,
[tex](p+q)^8=+\cdots+^8C_3p^3\cdot q^5+^8C_2p^2\cdot q^6+^8C_1p^1\cdot q^7+^8C_0p^0\cdot q^8[/tex]So, the probability that at most three of them weigh at least 70 kg is
[tex]\begin{gathered} ^8C_3(0.3242)^3\cdot(0.6758)^5+^8C_2(0.3242)^2\cdot(0.6758)^6+ \\ ^8C_1(0.3242)^1\cdot(0.6758)^7+^8C^{}_0(0.6758)^8 \end{gathered}[/tex][tex]=0.49562\approx0.4956[/tex]Therefore, the correct answer is 0.4956