Respuesta :

Given:

Time = 2 hr.

If distance traveld by first car = "x"

then distance by second car = 190-x.

Formula is:

[tex]\text{speed}=\frac{\text{ Distance}}{\text{ Time}}[/tex][tex]\begin{gathered} S_{}=\frac{x}{2} \\ x=2S \end{gathered}[/tex]

For second car is:

[tex]\begin{gathered} \text{ spe}ed=\frac{\text{ Distance}}{\text{ Time}} \\ S_{}+7=\frac{190-x}{2} \\ 2S+14=190-x \\ x=190-14-2S \\ x=176-2S \end{gathered}[/tex]

Solve both equation is:

[tex]\begin{gathered} x=2S \\ x=176-2S \\ 176-2S=2S \\ 4S=176 \\ S=\frac{176}{4} \\ S=44 \end{gathered}[/tex]

Slower car speed is 44 mph.

Faster car speed is:

[tex]\begin{gathered} S_2=S+7 \\ S_2=44+7 \\ S_2=51 \end{gathered}[/tex]

Faster car speed is 51 mph.

ACCESS MORE
EDU ACCESS