Respuesta :

Remember the definition of the inverse function

[tex]\begin{gathered} f^{-1}(f(x))=x \\ f^{}(f^{-1}(y))=y \end{gathered}[/tex]

Then, in our problem, we need to find f^-1 such that

[tex]\begin{gathered} f^{-1}(f(x))=x \\ \Rightarrow f^{-1}(x-13)=x \\ \end{gathered}[/tex]

Then, a clear possibility is:

[tex]\begin{gathered} f^{-1}(y)=y+13 \\ \Rightarrow f^{-1}(x-13)=x-13+13=x \\ \Rightarrow f^{-1}(y)=y+13 \end{gathered}[/tex]

Now, the second condition

[tex]\begin{gathered} f^{}(f^{-1}(y))=f(y+13)=(y+13)-13=y \\ \Rightarrow f^{}(f^{-1}(y))=y \end{gathered}[/tex]

Thus, the inverse function is x+13

[tex]f^{-1}(x)=x+13[/tex]

RELAXING NOICE
Relax