It is given that the figures are similar:
The ratio of heights is same as the ratio of bases:
[tex]\frac{h_1}{h_2}=\frac{b_1}{b_2}=\frac{36}{45}=\frac{4}{5}[/tex]
Use theorem of equal ratios to get:
[tex]\frac{h_1}{h_2}=\frac{b_1}{b_2}=\frac{b_1+h_1}{b_2+h_2^{}}=\frac{4}{5}[/tex]
Therefore the formula of perimeter is given by:
[tex]P=2(b+h)[/tex]
Therefore it follows:
[tex]\begin{gathered} \frac{P_1}{P_2}=\frac{2(b_1+h_1)}{2(b_2+h_2)} \\ \frac{P_1}{P_2}=\frac{(b_1+h_1)}{(b_2+h_2)} \\ \frac{P_1}{P_2}=\frac{4}{5} \end{gathered}[/tex]
The ratio of areas is given by:
[tex]\begin{gathered} \frac{A_1}{A_2}=\frac{b_1h_1}{b_2h_2} \\ \frac{A_1}{A_2}=\frac{4}{5}\times\frac{4}{5} \\ \frac{A_1}{A_2}=\frac{16}{25} \end{gathered}[/tex]
Hence the ratio of perimeters is 4/5 and ratio of areas is 16/25.