home / study / math / algebra / questions and answers / an environmental provider sells hemispherical holding ...
Question: An environmental provider sells hemispherical hold...
An environmental provider sells hemispherical holding ponds for treatment of chemical waste. The volume of a pond is [tex]V_{1} [/tex]=1/2( 4/3pi x [tex] r_{1} [/tex]^3), where [tex] r_{1} [/tex] is the radius in feet. The provider also sells cylindrical collecting tanks. A collecting tank fills completely and then drains completely to fill the empty pond. The volume of the tank is [tex]V_{2} [/tex]=12 pie x [tex]r_{2} [/tex]^2, where [tex]r_{2} [/tex] is the radius of the tank.

Given that the volumes are equal, [tex]V_{1} [/tex]=[tex]V_{2} [/tex], Write an equation that shows [tex]r_{1} [/tex] as a function of [tex]r_{2} [/tex].

Is it [tex]r_{1} [/tex]=[tex]r_{2} [/tex]?

Respuesta :

[tex]\bf \begin{cases} V_1=\frac{1}{2}\left( \frac{4}{3}\pi\cdot x\cdot r_1^3 \right) \\\\ V_1=12\cdot \pi \cdot x\cdot r_2^2\\ --------------\\ V_1=V_2 \\\\ \frac{1}{2}\left( \frac{4}{3}\pi\cdot x\cdot r_1^3 \right)=12\cdot \pi \cdot x\cdot r_2^2 \end{cases} \\\\\\ \cfrac{1}{2}\left( \frac{4}{3}\pi\cdot x\cdot r_1^3 \right)=12\cdot \pi \cdot x\cdot r_2^2\implies \cfrac{2\pi x}{3}r_1^3=12\pi xr_2^2[/tex]

[tex]\bf r_1^3=\cfrac{3}{2\pi x}\cdot 12\pi x r_2^2\implies r_1^3=\cfrac{3}{1}\cdot 6r_2^2 \\\\\\ r_1^3=18r_2^2\impliedby \textit{now, taking }\sqrt[3]{\qquad }\textit{ to both sides} \\\\\\ \sqrt[3]{r_1^3}=\sqrt[3]{18r_2^2}\implies r_1=\sqrt[3]{18r_2^2}[/tex]
ACCESS MORE