Respuesta :

Given the following data,

[tex]\begin{gathered} \text{slope of the asymptotes}=\pm\frac{4}{3} \\ \text{vertex}=(-2,5) \\ \text{focus}=(x,y)\Rightarrow(-4,5) \end{gathered}[/tex]

The equation of the hyperbola is,

[tex]\frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2}=1[/tex]

where,

[tex](h,k)\text{ represents the centre of the hyperbola}[/tex]

Ignoring the plus and negative sign of the slope,

[tex]\begin{gathered} \text{slope(m)}=\frac{4}{3}=\frac{a}{b} \\ \text{where,} \\ a=4 \\ b=3 \end{gathered}[/tex]

Substituting the values into the equation of the hyperbola inorder to solve for the center,

[tex]\frac{(5-k)^2}{4^2}-\frac{(-4-h)^2}{3^2}=1[/tex]

RELAXING NOICE
Relax