Respuesta :

ANSWER

[tex](x-11)^2+(y+8)^2=74[/tex]

EXPLANATION

Given:

A circle with endpoints (18, -13) and (4, 3) as the diameter.

Desired Outcome:

Equation of the circle.

Determine the center of the circle using the midpoint formula

[tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

where:

x1 = 18

x2 = 4

y1 = -13

y2 = -3

Substitute the values:

[tex]\begin{gathered} (\frac{18+4}{2},\frac{-13-3}{2}) \\ =(\frac{22}{2},\frac{-16}{2}) \\ =(11,-8) \end{gathered}[/tex]

Therefore, the center (h, k) of the circle is (11, -8)

Determine the radius of the circle

[tex]r=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}^[/tex]

where:

x1 = 11

x2 = 4

y1 = -8

y2 = -3

Substitute the values:

[tex]\begin{gathered} r=\sqrt{(4-11)^2+(-3--8)^2}^ \\ r=\sqrt{(-7)^2+(-5)^2} \\ r=\sqrt{49+25} \\ r=\sqrt{74} \end{gathered}[/tex]

Now, the equation of the circle is:

[tex]\begin{gathered} (x-h)^2+(y-k)^2=r^2 \\ (x-11)^2+(y--8)^2=(\sqrt{74})^2 \\ (x-11)^2+(y+8)^2=74 \end{gathered}[/tex]

Graph:

Ver imagen AlphonsoG607646
RELAXING NOICE
Relax