If we are working with angles between 0° and 90°, we can use a right triangle to help us visualize the answer.
So, we know that secant is the inverse of cosine, that is:
[tex]\sec \theta=\frac{1}{\cos \theta}[/tex]And we know that cosing, in a right triangle, is the adjancet leg divided by the hypotenuse. Let's call l_a the adjacent leg, l_o the opposide leg and h the hypotenuse. So:
[tex]\sec \theta=\frac{1}{\cos \theta}=\frac{1}{\frac{l_a}{h}}=\frac{h}{l_a}[/tex]And we know that sec (θ) is 5/3, so if we draw a triangle with l_a = 1, we will have:
[tex]h=l_a\sec \theta=1\cdot\frac{5}{3}=\frac{5}{3}[/tex]so:
The cot(θ) is the inverse of tan(θ), so:
[tex]\cot (\theta)=\frac{1}{\tan(\theta)}=\frac{1}{\frac{l_o}{l_a}}=\frac{l_a}{l_o}[/tex]So, we can use the Pythagora's theorem to find l_o and calculate cot(θ):
[tex]\begin{gathered} (\frac{5}{3})^2=1^2+l^2_o_{} \\ l^2_o=\frac{25}{9}-1=\frac{25-9}{9}=\frac{16}{9} \\ l_o=\frac{4}{3} \end{gathered}[/tex]So:
[tex]\cot (\theta)=\frac{l_a}{l_o}=\frac{1}{\frac{4}{3}}=\frac{3}{4}[/tex]