We are given the midpoint and one endpoint of a line segment.
Midpoint = (10, -7)
Endpoint = (-8, -10)
We are asked to find the other endpoint.
Recall that the midpoint formula is given by
[tex](x_m,y_m)=(\frac{x_1+x_2}{2}),(\frac{y_1+y_2}{2})[/tex]Let us solve for the other endpoint (x₂, y₂)
[tex]\begin{gathered} x_m=\frac{x_1+x_2}{2} \\ 10=\frac{-8+x_2}{2} \\ 10\cdot2=-8+x_2 \\ 20=-8+x_2 \\ 20+8=x_2 \\ x_2=28 \end{gathered}[/tex]Similarly,
[tex]\begin{gathered} y_m=\frac{y_1+y_2}{2} \\ -7=\frac{-10_{}+y_2}{2} \\ -7\cdot2=-10_{}+y_2 \\ -14=-10_{}+y_2 \\ -14+10=y_2 \\ y_2=-4 \end{gathered}[/tex]Therefore, the other endpoint is
[tex](x_2,y_2)=(28,-4)[/tex]