Evaluate the indefinite integral, using trigonometric substitution and a triangle to express the answer in terms of x.

Given the indefinite integral:
[tex]\int \frac{1}{(25+4x^2)^{\frac{3}{2}}}dx\text{ }[/tex]Applying integration by trigonometric substitution:
[tex]\int \frac{1}{50\sec (u)}du[/tex][tex]=\frac{1}{50}\int \frac{1}{\sec (u)}du[/tex][tex]=\frac{1}{50}\int \cos (u)du[/tex][tex]=\frac{1}{50}\sin (u)[/tex]Now we substitute into the equation u = arctan(2/5x)
[tex]=\frac{1}{50}\sin (\arctan (\frac{2}{5}x))[/tex]Finally simplifying:
[tex]=\frac{x}{25(4x^2+25)^{\frac{1}{2}}}+\text{ C}[/tex]