How far along the ladder can a 750 N person climb up the ladder?

We will ahve the following:
Forces on x:
[tex]\sum ^{}_{}F_x=0=\sigma-n_1\colon\sigma=n_1[/tex]Forces on y:
[tex]\sum ^{}_{}F_y=0=n_2-200N-750N\colon n_2=950N[/tex]Since it is a stable system we will have:
[tex]n_1=\mu n_1[/tex]Now, we will determine the torque at the bottom of the ladder:
[tex]\sum ^{}_{}\tau_{\text{bottom}}=0-(200N)(3m)\cos (56)[/tex]Also:
[tex]-(750N)(d)\cos (56)[/tex]&
[tex]+(n_1)(5m)\sin (56)[/tex]Finally:
[tex]0=-600\cos (56)-d\cdot750\cos (56)+(285)(5)\sin (56)\Rightarrow-d\cdot750\sin (56)=600\cos (56)-(285)(5)\sin (56)[/tex][tex]\Rightarrow d=\frac{(285)(5)\sin (56)-600\cos (56)}{750\cos (56)}\Rightarrow d=2.01686584[/tex][tex]\Rightarrow d\approx2.02[/tex]So, the distance along the ladded that a 750N person could climb in the ladder would be approximately 2.02 meters.