Use the change of base formula to compute log314.Round your answer to the nearest thousandth.

Hello there. To solve this question, we'll have to remember some properties about changing bases in logarithms.
Given the logarithm:
[tex]\log_3\left(\dfrac{1}{4}\right)[/tex]We first use the properties:
[tex]\begin{gathered} \log_c\left(\dfrac{a}{b}\right)=\log_c(a)-\log_c(b)\text{ and } \\ \\ \log_c(1)=0,0In this case, we get:[tex]\begin{gathered} \log_3\left(\dfrac{1}{4}\right)=\log_3(1)-\log_3(4)=0-\log_3(4) \\ \\ \Rightarrow-\log_3(4) \end{gathered}[/tex]Now, we use the change of basis formula:
[tex]\log_c(a)=\dfrac{\log_d(a)}{\log_d(c)}[/tex]When changing for a basis d greater than zero and not equal to 1.
With this, we have that
[tex]-\log_3(4)=-\dfrac{\log_{10}(4)}{\log_{10}(3)}[/tex]Applying the property:
[tex]\log_c(a^b)=b\cdot\log_c(a)[/tex]and knowing that 4 = 2², we get
[tex]-\dfrac{2\log_{10}(2)}{\log_{10}(3)}[/tex]We chose base 10 log because we know the following values for:
[tex]\begin{gathered} \log_{10}(2)\approx0.3010 \\ \\ \log_{10}(3)\approx0.477 \end{gathered}[/tex]Hence the approximation for what we want is
[tex]\log_3\left(\dfrac{1}{4}\right)\approx-\dfrac{2\cdot0.3010}{0.477}=-1.262[/tex]This is the answer we're looking for.