Respuesta :

Given the matrix A :

[tex]A=\begin{bmatrix}{0} & {0} & {1} \\ {1} & {0} & {0} \\ {0} & {1} & {0}\end{bmatrix}[/tex]

The determinant of the matrix will be =

[tex]1\cdot(1\cdot1-0)=1[/tex]

Now, we will find the transpose of the matrix :

[tex]A^T=\begin{bmatrix}{0} & {1} & {0} \\ {0} & {0} & {1} \\ {1} & {0} & {0}\end{bmatrix}[/tex]

Then, find the elements of the inverse :

[tex]\text{adj(A)}=\begin{bmatrix}{0} & {1} & {0} \\ {0} & {0} & {1} \\ {1} & {0} & {0}\end{bmatrix}[/tex]

So, the inverse will be :

[tex]A^{-1}=\frac{adj(A)}{\det (A)}=\begin{bmatrix}{0} & {1} & {0} \\ {0} & {0} & {1} \\ {1} & {0} & {0}\end{bmatrix}[/tex]

RELAXING NOICE
Relax