Respuesta :

If the triangles are similar then the ratio between corresponding sides remains constant:

[tex]\frac{PQ}{XY}=\frac{QR}{YZ}=\frac{PR}{XZ}[/tex]

We have

• PQ = 9

,

• XY = 5

,

• PR = 2x-4

,

• XZ = x

We can find x with the ratio:

[tex]\begin{gathered} \frac{PQ}{XY}=\frac{PR}{XZ} \\ \frac{9}{5}=\frac{2x-4}{x} \end{gathered}[/tex][tex]\begin{gathered} 9x=5(2x-4) \\ 9x=10x-20 \\ 20=10x-9x \\ 20=x \end{gathered}[/tex]

If x = 20, then

[tex]PR=2x-4=2\cdot20-4=36[/tex]

PR = 36

RELAXING NOICE
Relax