Given: APQR VAXYZ. What is the length of side PR? (T.G.7)(1 point) Y 9 5 Х N P 2x - 4 R O A. 25 O B. 36 O C. 20 O D 40

If the triangles are similar then the ratio between corresponding sides remains constant:
[tex]\frac{PQ}{XY}=\frac{QR}{YZ}=\frac{PR}{XZ}[/tex]We have
• PQ = 9
,• XY = 5
,• PR = 2x-4
,• XZ = x
We can find x with the ratio:
[tex]\begin{gathered} \frac{PQ}{XY}=\frac{PR}{XZ} \\ \frac{9}{5}=\frac{2x-4}{x} \end{gathered}[/tex][tex]\begin{gathered} 9x=5(2x-4) \\ 9x=10x-20 \\ 20=10x-9x \\ 20=x \end{gathered}[/tex]If x = 20, then
[tex]PR=2x-4=2\cdot20-4=36[/tex]PR = 36