Respuesta :

[tex]f(x)=2x^2-20x+49[/tex]

Since the leading term has a positive coefficient, the function is concave up and has a minimum value.

The minimum value of the quadractic function is given by:

[tex]-\frac{b^2-4ac}{4a}=-\frac{(-20)^2-4\cdot2\cdot49}{4\cdot2}=-1[/tex]

This minimum value occur at:

[tex]-\frac{b}{2a}=-\frac{(-20)}{2\cdot2}=5[/tex]

ACCESS MORE
EDU ACCESS