Solve the equation with rational exponents. Check all proposed solutions

We need to solve the following equation
[tex]7x^{\frac{7}{2}}-21=0[/tex]Steps:
1. Add 21 to both sides
[tex]7x^{\frac{7}{2}}=21[/tex]2. Divide both sides by 7
[tex]x^{\frac{7}{2}}=3[/tex]3. apply the following
[tex]\begin{gathered} \ln x^{\frac{7}{2}}=\ln 3 \\ \frac{7}{2}\ln x=\ln 3 \\ \ln x=\frac{2}{7}\ln 3 \\ e^{\ln x}=e^{(\frac{2}{7}\ln 3)} \\ x=3^{\frac{2}{7}} \end{gathered}[/tex]Thus, the solution is
[tex]x=3^{\frac{2}{7}}[/tex]