Respuesta :

We need to solve the following equation

[tex]7x^{\frac{7}{2}}-21=0[/tex]

Steps:

1. Add 21 to both sides

[tex]7x^{\frac{7}{2}}=21[/tex]

2. Divide both sides by 7

[tex]x^{\frac{7}{2}}=3[/tex]

3. apply the following

[tex]\begin{gathered} \ln x^{\frac{7}{2}}=\ln 3 \\ \frac{7}{2}\ln x=\ln 3 \\ \ln x=\frac{2}{7}\ln 3 \\ e^{\ln x}=e^{(\frac{2}{7}\ln 3)} \\ x=3^{\frac{2}{7}} \end{gathered}[/tex]

Thus, the solution is

[tex]x=3^{\frac{2}{7}}[/tex]

RELAXING NOICE
Relax