Respuesta :
1) No
We cannot conclude that the sampling of these three species of this forest are of equal proportion because the difference between the observed values of any two of the sampled species is significant.
[tex]\begin{gathered} P(x)=\frac{x}{242} \\ \text{and} \\ \text{ Expected value }=P(x)\times x \end{gathered}[/tex]| Observed(x) | P(x) | Expected
--------------------------------------------------------------------------------------------------------
Western Red | 103 | 0.4256 | 43.8368
Cedar | | |
-------------------------------------------------------------------------------------------------------------
Douglas Fir | 60 | 0.2479 | 14.8740
----------------------------------------------------------------------------------------------------
Western | 79 | 0.3264 | 25.7856
Hemlock | | |
-------------------------------------------------------------------------------------------------------------
[tex]\begin{gathered} X^2_c=\sum \frac{\lbrack x-(xP(x))\rbrack^2}{xP(x)} \\ \text{where} \\ X^2_{_c}=\text{ the Chi-Square Goodness of Fit } \end{gathered}[/tex][tex]\begin{gathered} \text{Let} \\ A=x-xP(x),B=\frac{A^2}{xP(x)} \end{gathered}[/tex]A | A² | B
--------------------------------------------------------------------------------------------------
59.1632 | 3500.2842 | 79.8481
-------------------------------------------------------------------------------------------
45.1260 | 2036.3559 | 136.9071
---------------------------------------------------------------------------------
53.2144 | 2831.7724 | 109.8199
-------------------------------------------------------------------------------
| ∑ = 326.5751
Therefore, the Chi-Square = 326.5751, p = 0
Otras preguntas
