Respuesta :

Answer:

[tex]AC=8\sqrt{2}\text{ in}[/tex]

Explanations:

Given the sketch of the triangle shown below:

From the figure shown, the measure of the interior quadrilateral is 360 degrees

30 + 30 + 30 + reflex = 360

reflex angle = 360 - 90

reflex angle = 270 degrees

Since AB = BC = 8in

To determine the measure of AC, we will use the sine rule

[tex]\begin{gathered} \frac{AC}{sin\angle ABC}=\frac{BC}{sin\angle BAC} \\ \frac{AC}{sin90}=\frac{8}{sin45} \\ \end{gathered}[/tex]

Simplify the result

[tex]\begin{gathered} ACsin45=8sin90 \\ AC=\frac{8sin90}{sin45} \\ AC=\frac{8(1)}{\frac{1}{\sqrt{2}}} \\ AC=8\sqrt{2}\text{ in} \end{gathered}[/tex]

Ver imagen KarinneE655134
ACCESS MORE
EDU ACCESS