ANSWER:
[tex]\begin{gathered} \text{ The Vanness expression is simplified by subtracting the exponents, and we obtain the following:} \\ \\ \frac{x^{\frac{4}{3}}}{x^{\frac{5}{6}}}=x^{\frac{1}{2}} \\ \\ \text{ The Williams expression is simplified by adding the exponents, and we obtain the following:} \\ \\ \sqrt[16]{x\cdot\:x^3\cdot\:x^4}=x^{\frac{1}{2}} \end{gathered}[/tex]
STEP-BY-STEP EXPLANATION:
We have that the given expression is the following:
[tex]\frac{x^{\frac{4}{3}}}{x^{\frac{5}{6}}}[/tex]
The other expression is the following:
[tex]\sqrt[16]{x\cdot \:x^3\cdot \:x^4}[/tex]
We simplify in each case:
[tex]\begin{gathered} \text{ The Vanness expression is simplified by subtracting the exponents, and we obtain the following:} \\ \\ \frac{x^{\frac{4}{3}}}{x^{\frac{5}{6}}}=x^{\frac{4}{3}-\frac{5}{6}}=x^{\frac{1}{2}} \\ \\ \text{ The Williams expression is simplified by adding the exponents, and we obtain the following:} \\ \\ \sqrt[16]{x\cdot\:x^3\cdot\:x^4}=\sqrt[16]{x^{1+3+4}}=\sqrt[16]{x^8}=x^{\frac{8}{16}}=x^{\frac{1}{2}} \end{gathered}[/tex]
This means that the expressions are equal