1)
[tex]\begin{gathered} y+2x=8 \\ y=-2x+8;\text{ m=-2; b=8} \end{gathered}[/tex]2)
[tex]\begin{gathered} 2y+\frac{1}{2}x+1=0 \\ y=-\frac{1}{4}x-1;\text{ m=-1/4} \end{gathered}[/tex]3)
[tex]\begin{gathered} 2y+x=1 \\ y=-\frac{1}{2}x+1;\text{ m=-1/2} \end{gathered}[/tex]4)
[tex]y=x-4;\text{ m=1}[/tex]5)
[tex]\begin{gathered} y=2(x-1) \\ y=2x-2;\text{ m=2} \end{gathered}[/tex]6)
[tex]\begin{gathered} 2y=x-4 \\ y=\frac{1}{2}x-2;\text{ m=1/2} \end{gathered}[/tex]7)
[tex]\begin{gathered} y+2x+2=0 \\ y=-2x-2;\text{ m=-2} \end{gathered}[/tex]8)
[tex]y=\frac{1}{2}x+2;\text{ m=1/2}[/tex]9)
[tex]y=4-x;\text{ m=-1}[/tex]10)
[tex]\begin{gathered} 2y=4-x \\ y=-\frac{1}{2}x+2;\text{ m=-1/2} \end{gathered}[/tex]A rectangle has 2 sets of parallellines that means they have the same slope (m) and 2 sets of perpendicular lines (opposite reciprocal slopes)
Lines with the same slope: 6 and 8
*Lines 6 and 8, are part of the rectangle, 2y=x-4 and y=1/2x+2
Lines with perpendicular lines to 6 and 8: 1 and 7
*Lines 1 and 7, are part of the rectangle, y+2x=8 and y+2x+2=0