The Solution.
The given probability distribution is
[tex]P(X=x)=cx,x=1,2,3,4[/tex]The expected value for the random variable X is given by the formula below:
[tex]\begin{gathered} E(X)=\sum ^4_{x\mathop=1}xP(x) \\ \text{where P(x)=cx} \end{gathered}[/tex]This implies that:
[tex]E(X)=1.P(1)+2.P(2)+3.P(3)+4.P(4)[/tex][tex]E(X)=1(c)+2(2c)+3(3c)+4(4c)[/tex][tex]E(X)=c+4c+9c+16c=30c[/tex]So, the expected value of X is 30c.
Thus, the correct answer is 30c.