An electron in the n= 7 state of a hydrogen atom makes a transition to the n= 3 state and emits a photon in the process. What is the wavelength, in nm, of the photon emitted?

Respuesta :

We are asked to determine the wavelength of a photon. To do that we will use the following formula:

[tex]\lambda=\frac{hc}{E_p}[/tex]

Where:

[tex]\begin{gathered} h=\text{ Plank's constant} \\ c=\text{ speed of light} \\ E_p=\text{ change in energy of the photon} \end{gathered}[/tex]

To calculate the change in energy of the photon we will use the following formula:

[tex]E_p=\frac{2\pi^2m_eK^2Z^2e^4}{h^2}(\frac{1}{n_3^2}-\frac{1}{n_7^2})[/tex]

Where:

[tex]\begin{gathered} m_e=\text{ mass of the electron} \\ K=electric\text{ constant} \\ Z=\text{ atomic number} \\ e=\text{ elementary charge} \\ h=\text{ plank's constant} \end{gathered}[/tex]

The mass of the electron is given by:

[tex]m_e=9.1\times10^{-31}kg[/tex]

The electric constant is given by:

[tex]K=9\times10^9\frac{Nm^2}{C^2}[/tex]

The atomic number of hydrogen is Z = 1.

The elementary charge has a value of:

[tex]e=1.6\times10^{-19}C[/tex]

Planks constant is equivalent to:

[tex]h=6.6\times10^{-34}\frac{m^2kg}{s}[/tex]

Now, we substitute the values:

[tex]E_p=\frac{2\pi^2(9.1\times10^{-31}kg)(9\times10^9\frac{Nm^2}{C^2})(1)^2(1.6\times10^{-19}C)^4}{(6.6\times10^{-34}\frac{m^2kg}{s})^2}(\frac{1}{3^2}-\frac{1}{7^2})[/tex]

Solving the operations:

[tex]E_p=1.99\times10^{-19}J[/tex]

Now, we substitute the value in the formula for the wavelength:

[tex]\lambda=\frac{(6.6\times10^{-34}\frac{m^2kg}{s})(3\times10^8\frac{m}{s})}{(1.99\times10^{-19}J)}[/tex]

Solving the operation:

[tex]\lambda=9.95\times10^{-7}m[/tex]

In nanometers the wavelength is:

[tex]\lambda=995nm[/tex]

Therefore, the wavelength is 995 nanometers.

ACCESS MORE
EDU ACCESS
Universidad de Mexico