Subtracting mixed numbers.
Let's explain the process to subtract mixed numbers using the following example:
[tex]5\frac{1}{2}-2\frac{3}{7}[/tex]Step 1. Convert each mixed number to a fraction by using the following rule:
[tex]A\frac{b}{c}=\frac{(A\times c)+b}{c}[/tex]Converting 5 1/2 to a fraction:
[tex]5\frac{1}{2}=\frac{(5\times2)+1}{2}[/tex]Solving the operations:
[tex]\begin{gathered} 5\frac{1}{2}=\frac{10+1}{2} \\ 5\frac{1}{2}=\frac{11}{2} \end{gathered}[/tex]And then we convert the second mixed number 2 3/7 following the same rule:
[tex]2\frac{3}{7}=\frac{(2\times7)+3}{7}[/tex]Solving the operations:
[tex]\begin{gathered} 2\frac{3}{7}=\frac{14+3}{7} \\ \\ 2\frac{3}{7}=\frac{17}{7} \end{gathered}[/tex]Step 2. Now that we have converted the two mixed number to fractions, the original subtraction, which was:
[tex]5\frac{1}{2}-2\frac{3}{7}[/tex]Becomes the following expression by substituting the fractions:
[tex]\frac{11}{2}-\frac{17}{7}[/tex]Step 3. Use the formula for subtracting fractions.
The formula for subtracting fraction is:
[tex]\frac{a}{b}-\frac{c}{d}=\frac{(a\times d)-(b\times c)}{b\times d}[/tex]We apply it to our subtraction, in our case a=11, b=2, c=17, and d=7:
[tex]\frac{11}{2}-\frac{17}{7}=\frac{(11\times7)-(2\times17)}{2\times7}[/tex]Step 4. Solve the operations to find the result:
[tex]\frac{11}{2}-\frac{17}{7}=\frac{77-34}{14}[/tex][tex]=\frac{43}{14}[/tex]Step 5. The result of the subtraction in fraction form is:
43/14
But if we need to present it in mixed form, we just find how many times does 14 fits into 43, in this case, 3 times because 14x3=42, so the result in mixed form is 3 as the integer, ans 1/14 as the fraction:
[tex]\frac{43}{14}=3\frac{1}{14}[/tex]