Respuesta :

Let's begin by finding the mean of the data

[tex]\begin{gathered} \text{Mean = }\frac{\sum x}{n}=\text{ }\frac{46\text{ + 47 + }5\text{6 + 48 + }46\text{ + 52 + }5\text{7 + 52 + 4}5}{9} \\ \text{Mean = }\frac{449}{9}=48.89\text{ }\approx\text{ 48.9} \end{gathered}[/tex]

Mean = 48.9

Next, we calculate the absolute value of the difference between each data value and the mean, we have:

|data value mean|

|46 - 48.9| = 2.9

|47 - 48.9| = 1.9

|56 - 48.9| = 7.1

|48 - 48.9| = 0.9

|46 - 48.9| = 2.9

|52 - 48.9| = 3.1

|57 - 48.9| = 8.1

|52 - 48.9| = 3.1

|45 - 48.9| = 3.9

Next, we sum up the absolute values of the differences (from above) & divide by the number of data values, we have:

[tex]\begin{gathered} MOD=\frac{2.9\text{ + 1.9 + 7.1 + 0.9 + 2.9 + 3.1 + 8.1 + 3.1 + 3.9}}{9}=\frac{69}{9} \\ \text{MOD = 7.7 }\approx\text{ 8 (to the nearest whole number)} \end{gathered}[/tex]

MOD = 8 (to the nearest whole number)

ACCESS MORE
EDU ACCESS
Universidad de Mexico