Respuesta :

Answer:

[tex]\tan X=\frac{3\sqrt[]{65}}{13}[/tex]

Explanation:

From the diagram:

• The side ,opposite, angle X is ZY

,

• The side ,adjacent to, angle X is XY

From trigonometric ratios, we know that:

[tex]\begin{gathered} \tan \theta=\frac{Opposite}{\text{Adjacent}} \\ \implies\tan X=\frac{ZY}{XY} \end{gathered}[/tex]

Since we require the value of ZY, we find it using Pythagoras Theorem.

[tex]\begin{gathered} XZ^2=XY^2+ZY^2 \\ \sqrt[]{58}^2=\sqrt[]{13}^2+ZY^2 \\ ZY^2=58-13 \\ ZY^2=45 \\ ZY=\sqrt[]{45} \end{gathered}[/tex]

Therefore:

[tex]\begin{gathered} \tan X=\frac{ZY}{XY} \\ =\frac{\sqrt[]{45}}{\sqrt[]{13}} \end{gathered}[/tex]

We rationalize our result.

[tex]\begin{gathered} =\frac{\sqrt[]{45}}{\sqrt[]{13}}\times\frac{\sqrt[]{13}}{\sqrt[]{13}} \\ \tan X=\frac{3\sqrt[]{65}}{13} \end{gathered}[/tex]

ACCESS MORE
EDU ACCESS