Given:
[tex]15x+10y=700[/tex][tex]x+y=60[/tex]
where x represents the number of minutes of running and y represents the number of minutes of hiking.
Required:
We need to find the number of minutes for running.
Explanation:
Consider the equation.
[tex]x+y=60[/tex]
Subtract x from both sides of the equation.
[tex]x+y-x=60-x[/tex][tex]y=60-x[/tex]
Consider the equation.
[tex]15x+10y=700[/tex][tex]Substitute\text{ y=60-x in the equation.}[/tex]
[tex]15x+10(60-x)=700[/tex][tex]15x+600-10x=700[/tex][tex]5x+600=700[/tex]
Subtract 600 from both sides of the equation.
[tex]5x+600-600=700-600[/tex][tex]5x=100[/tex]
Divide both sides of the equation by 5.
[tex]\frac{5x}{5}=\frac{100}{5}[/tex][tex]x=20[/tex]
The running time is 20 minutes.
Substitute x =20 in the equation y =60-x.
[tex]60-20=40[/tex]
The hiking time is 40 minutes.
Final answer:
The running time is 20 minutes.
The hiking time is 40 minutes.