The binomila probabiity formula is given by
[tex]p(x)=\frac{n!}{(n-x)!x!}p^xq^{n-x}[/tex]Where
p is probability of success
x is the number of trials
q is the probability of failure
n is total number of trials
To calculate the probabilities, we will use a binomial calculator. Given, p = 0.5 and n = 14. So,
[tex]P(x\geq10)=0.0898[/tex]and
[tex]P(x\leq12)=0.9991[/tex]and
[tex]P(x=12)=0.0056[/tex]Now, the formula for the mean of a binomial distribution is
[tex]\mu=np[/tex]Plugging in the values, it is:
[tex]\begin{gathered} \mu=np \\ \mu=(14)(0.5) \\ \mu=7 \end{gathered}[/tex]The formula for standard deviation of a binomial distribution is
[tex]\sigma=\sqrt[]{n\cdot p\cdot(1-p)}[/tex]Plugging in the values, we have:
[tex]\begin{gathered} \sigma=\sqrt[]{n\cdot p\cdot(1-p)} \\ \sigma=\sqrt[]{14\cdot0.5\cdot(1-0.5)} \\ \sigma=\sqrt[]{14\cdot0.5\cdot0.5} \\ \sigma=\sqrt[]{3.5} \\ \sigma=1.8708 \end{gathered}[/tex]