B.
This equation represent the position of the ball if we derivate we find the speed
[tex]\begin{gathered} -8(2)t+32(1)+0 \\ s=-16t+32 \end{gathered}[/tex]we replace the speed by 0 to solve t, the value of t will be seconds when the heigth is maximum
[tex]\begin{gathered} 0=-16t+32 \\ 16t=32 \\ t=\frac{32}{16} \\ \\ t=2 \end{gathered}[/tex]After 2 seconds the heigth is maximum
C.
We replace a heigth 0 on the first equation to find when the ball hit the ground
[tex]0=-8t^2+35t+6[/tex]it is a polynomial then we can use quatratic formula to solve
[tex]-8t^2+35t+6=0[/tex]where -8 is a, 35 is b and 6 c
[tex]t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]replacing
[tex]t=\frac{-(35)\pm\sqrt[]{(35)^2-4(-8)(6)}}{2(-8)}[/tex]simplify
[tex]\begin{gathered} t=\frac{-35\pm\sqrt[]{1225+192}}{-16} \\ \\ t=\frac{-35\pm\sqrt[]{1417}}{-16} \\ \\ t=\frac{-35\pm37.6}{-16} \end{gathered}[/tex]we obtan to values for t
[tex]\begin{gathered} t_1=\frac{-35+37.6}{-16}=-0.1625 \\ \\ t_2=\frac{-35-37.6}{-16}=4.5375 \end{gathered}[/tex]we chose the second value because the time cant be negative
then time when the ball hit the ground is 4.54 seconds