Consider the following graph of two functions.Step 4 of 4: Find(2)-1)Enable Zoom/Pan8(x) = -3-lok105S(x) = x + 3101Submit

Given:
[tex]\begin{gathered} f(x)=x+3 \\ g(x)=-3x-1 \end{gathered}[/tex]To Deermine
[tex](\frac{f}{g})(-1)[/tex]Solution
[tex]\begin{gathered} Determine\text{ \lparen}\frac{f}{g})(x) \\ (\frac{f}{g})(x)=\frac{f(x)}{g(x)} \\ (\frac{f}{g})(x)=\frac{x+3}{-3x-1} \end{gathered}[/tex][tex]\begin{gathered} (\frac{f}{g})(-1)=\frac{-1+3}{-3(-1)-1} \\ (\frac{f}{g})(-1)=\frac{2}{3-1} \\ (\frac{f}{g})(-1)=\frac{2}{2}=1 \end{gathered}[/tex]Hence, (f/g)(-1) = 1