Answer:
The scale factor is 2.
Explanation:
To determine the scale factor using the coordinates of each point, simply divide the respective coordinates of the new figure by the old figure.
[tex]\begin{gathered} A^{\prime}(8,6) \\ A(4,3) \end{gathered}[/tex][tex]\begin{gathered} 8\div4=2 \\ 6\div3=2 \end{gathered}[/tex][tex]\begin{gathered} B^{\prime}(2,-10) \\ B(1,-5) \\ 2\div1=2 \\ -10\div-5=2 \end{gathered}[/tex][tex]\begin{gathered} C^{\prime}(12,-4) \\ C(6,-2) \\ 12\div6=2 \\ -4\div-2=2 \end{gathered}[/tex]As we can see above, the ratio of the coordinates of the new image triangle A'B'C and the original image triangle ABC is 2. Hence, the scale factor is 2.