Using the tangent relation,
[tex]\begin{gathered} m\angle APB\text{ =}\frac{\text{ major arc - minor arc}}{2} \\ \text{Let the minor arc = x}^0 \\ \text{ Then, the major arc = 3x}^0 \end{gathered}[/tex]The angles subtended by the major and minor arc sums up to 360 degrees.
[tex]\begin{gathered} \text{ Therefore,} \\ 3x^{}+x^{}=4x \\ 4x\text{ = 360} \\ x=90^0 \end{gathered}[/tex]That means, the angle subtended by the major arc
[tex]=3\text{ }\times90^0=270^0[/tex]While the angle subtended by the minor arc is
[tex]90^0[/tex]Applying the tangent relation above
[tex]m\angle APB\text{ = }\frac{270-90}{2}=\frac{180}{2}=90^0[/tex]Therefore, t