0.1 cases
Explanation:rate of decrease = 90%
initial amount = 100 cases
Since the decrease is exponential, we will apply exponential formula:
[tex]\begin{gathered} y=a(1-r)^t \\ \text{where r = rate = 90\%} \\ a\text{ = initial amount = 100} \\ t\text{ = time = 3 years} \\ y\text{ = amount after a specified year} \end{gathered}[/tex]Substitute the values into the formula:
[tex]\begin{gathered} r\text{ = 90\% = 0.90} \\ y=100(1-0.90)^3 \\ y=100(0.1)^3 \end{gathered}[/tex][tex]\begin{gathered} y\text{ = 100}(0.001) \\ y\text{ = 0.1} \end{gathered}[/tex]Hence, the number of cases after 3 years is 0.1