Given the functions f(x) and g(x) defined as:
[tex]\begin{gathered} f(x)=\log _2(x)+2 \\ g(x)=\log _2(x^3)-4 \end{gathered}[/tex]A)
We define the function h(x) as:
[tex]h(x)=f(x)+g(x)[/tex]Using the definitions of f(x) and g(x):
[tex]\begin{gathered} h(x)=\log _2(x)+2+\log _2(x^3)-4=\log _2(x\cdot x^3)-2 \\ \Rightarrow h(x)=4\log _2(x)-2 \end{gathered}[/tex]Where we used the following properties of logarithms:
[tex]\begin{gathered} \log _2(a^b)=b\cdot\log _2(a) \\ \log _2(a)+\log _2(b)=\log _2(a\cdot b) \end{gathered}[/tex]