For the following right triangle, find the side length x. Round your answer to the nearest hundredth.109

Answer:
the side length x is;
[tex]13.45\text{ units}[/tex]Explanation:
Given the right triangle in the attached image.
To calculate the value of x, Let us apply the Pythagorean theorem;
[tex]\begin{gathered} c^2=a^2+b^2 \\ c=\sqrt[]{a^2+b^2} \end{gathered}[/tex]From the given triangle;
[tex]\begin{gathered} a=10 \\ b=9 \\ c=x \end{gathered}[/tex]substituting the values;
[tex]\begin{gathered} c=\sqrt[]{a^2+b^2} \\ x=\sqrt[]{10^2+9^2} \\ x=\sqrt[]{100+81} \\ x=\sqrt[]{181} \\ x=13.45 \end{gathered}[/tex]Therefore, the side length x is;
[tex]13.45\text{ units}[/tex]