Given a rectangle with length l and width w, then
[tex]\text{ the area of the rectangle = }lw[/tex]In this case,
[tex]\text{ the area of the rectangle = }103\frac{1}{8}ft^2=\frac{825}{8}ft^2[/tex]and
[tex]l=12\frac{1}{2}ft=\frac{25}{2}ft[/tex]Therefore, we have
[tex]\frac{825}{8}=\frac{25}{2}\times w[/tex]this implies that
[tex]\begin{gathered} \frac{25w}{2}=\frac{825}{8} \\ \text{Cross}-\text{ mulitplying, we have} \\ 25w\times8=2\times825 \\ \text{this implies that} \\ 200w=2\times825 \end{gathered}[/tex][tex]w=\frac{2\times825}{200}=\frac{825}{100}=8\frac{25}{100}=8\frac{1}{4}ft[/tex]