Respuesta :

d.

The standard deviation for a data set is given by the next formula:

[tex]\sigma=\sqrt[]{\frac{\Sigma(x-x^-)^2_{}}{n}}[/tex]

Where n represents the number of data points and x⁻ represents the mean.

Let's check the mean:

[tex]M=\frac{15+27+28+34+42+52}{6}=\frac{198}{6}=33[/tex]

Hence, the mean is 33.

Now, the table for part b:

Where the third column represents the subtraction between x and the means. Also, the fourth column represents the (x-mean)^2.

Where the sum is equal to 828.

Now, we can replace the given values on the standard deviation:

[tex]\sigma=\sqrt[]{\frac{\Sigma(x-x^-)^2_{}}{n}}[/tex]

Where the sum (x-mean)^2. = 828 and n = 6( total number of data points)

[tex]\sigma=\sqrt[]{\frac{828^{}_{}}{6}}[/tex]

Hence, the standard deviation is given by:

[tex]\sigma=11.74734012[/tex]

Ver imagen OnurL242032
RELAXING NOICE
Relax