Since the sine is positive, we can conclude:
Opposite = 15
Adjacent = -8
Therefore, the angle θ is in the II quadrant, and the other 5 trigonometric functions are given by:
[tex]\begin{gathered} \sin (\theta)=\frac{opposite}{_{\text{ }}hypotenuse} \\ _{\text{ }}where\colon \\ _{\text{ }}hypotenuse=\sqrt[]{15^2+(-8)^2} \\ _{\text{ }}hypotenuse=17 \\ so\colon \\ \sin (\theta)=\frac{15}{17} \end{gathered}[/tex][tex]\cos (\theta)=\frac{adjacent}{_{\text{ }}hypotenuse}=-\frac{8}{17}[/tex][tex]\csc (\theta)=\frac{_{\text{ }}hypotenuse}{_{\text{ }}opposite}=\frac{17}{15}[/tex][tex]\sec (\theta)=\frac{_{\text{ }}hypotenuse}{_{\text{ }}adjacent}=-\frac{17}{8}[/tex][tex]\cot (\theta)=\frac{adjacent}{_{\text{ }}opposite}=-\frac{8}{15}_{}[/tex]