Respuesta :

(a) If two line are perpendicular than:

[tex]m_1\times m_2=-1[/tex]

where:

[tex]\begin{gathered} m_1=\text{ first line slope} \\ m_2=\text{ second line slope} \end{gathered}[/tex]

line :

[tex]\begin{gathered} y=mx+c \\ y=-5x+1 \end{gathered}[/tex]

So perpendicular line slope is:

[tex]\begin{gathered} m_1m_2=-1 \\ -5\times m_2=-1 \\ m_2=\frac{1}{5} \end{gathered}[/tex]

So equation of perpendicular line is:

[tex]\begin{gathered} y=mx+c \\ y=\frac{x}{5}+c \end{gathered}[/tex]

Line pass is (-2,-5)

[tex]\begin{gathered} y=\frac{x}{5}+c \\ -5=-\frac{2}{5}+c \\ c=\frac{2}{5}-5 \\ c=-\frac{23}{5} \end{gathered}[/tex]

Final equation of perpendicular line is:

[tex]\begin{gathered} y=mx+c \\ y=\frac{x}{5}-\frac{23}{5} \end{gathered}[/tex]

(b) parallel line slope is same for each other line is:

[tex]\begin{gathered} m_1=m_2 \\ m_1=-5 \\ m_2=-5 \end{gathered}[/tex]

so parallel line equation is:

[tex]\begin{gathered} y=mx+c \\ y=-5x+c \end{gathered}[/tex]

line pass at point (-2,-5) then.

[tex]\begin{gathered} y=-5x+c \\ -5=-5\times(-2)+c \\ -5=10+c \\ c=-10-5 \\ c=-15 \end{gathered}[/tex]

So parallel line equation is:

[tex]\begin{gathered} y=mx+c \\ y=-5x+(-15) \\ y=-5x-15 \end{gathered}[/tex]

RELAXING NOICE
Relax